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ayer-thickness determination and stratigraphic interpretation
sing spectral inversion: Theory and application
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ABSTRACT

Spectral inversion is a seismic method that uses a priori in-
formation and spectral decomposition to improve images of
thin layers whose thicknesses are below the tuning thickness.
We formulate a method to invert frequency spectra for layer
thickness and apply it to synthetic and real data using com-
plex spectral analysis.Absolute layer thicknesses significant-
ly below the seismic tuning thickness can be determined ro-
bustly in this manner without amplitude calibration. We ex-
tend our method to encompass a generalized reflectivity se-
ries represented by a summation of impulse pairs. Applica-
tion of our spectral inversion to seismic data sets from the
Gulf of Mexico results in reliable well ties to seismic data, ac-
curate prediction of layer thickness to less than half the tun-
ing thickness, and improved imaging of subtle stratigraphic
features. Comparisons between well ties for spectrally in-
verted data and ties for conventional seismic data illustrate
the superior resolution of the former. Several stratigraphic
examples illustrate the various destructive effects of the
wavelet, including creating illusory geologic information,
such as false stratigraphic truncations that are related to later-
al changes in rock properties, and masking geologic informa-
tion, such as updip limits of thin layers. We conclude that data
that are inverted spectrally on a trace-by-trace basis show
greater bedding continuity than do the original seismic data,
suggesting that wavelet side-lobe interference produces false
bedding discontinuities.

INTRODUCTION

According to the Widess �1973� model, seismically thin layers be-
ow one-eighth of a wavelength in thickness cannot be resolved.
owever, such thin layers might be significant reservoirs or impor-

ant flow units within reservoirs. Exploration and development geo-
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hysicists frequently are faced with the task of inferring layer thick-
ess for layers such as these where the top and base of the layer can-
ot be mapped distinctly. Consequently, determining layer proper-
ies for such seismically thin beds is of great interest in exploration
nd development applications.

Although tuning-thickness analysis based on the theory of Widess
1973� and Kallweit and Wood �1982� has been the thickness-map-
ing method of choice for several decades, Partyka et al. �1999�, Par-
yka �2005�, and Marfurt and Kirlin �2001� demonstrate the effec-
iveness of spectral decomposition using the discrete Fourier trans-
orm �DFT� as a thickness-estimation tool. However, such methods
ave difficulty with thin layers if seismic bandwidth is insufficient to
dentify the periodicity of spectral peaks and notches unambiguous-
y. This difficulty motivates the development of methods that do not
equire precise identification of peaks and troughs within the seismic
andwidth.

Partyka �2005�, Portniaguine and Castagna �2004, 2005�, Puryear
2006�, Chopra et al. �2006a, 2006b�, and Puryear and Castagna
2006� show that inversion of spectral decompositions for layer
roperties can be improved when reflection coefficients are deter-
ined simultaneously. The result is a sparse-reflectivity inversion

hat can be parameterized to provide robust layer-thickness esti-
ates. Such a process, called spectral inversion, produces results

hat differ from conventional seismic inversion methods.
In this article, we discuss the basic theory of spectral inversion,

evelop a new spectral-inversion algorithm, and show field exam-
les of improved bed-thickness determination and enhanced strati-
raphic imaging that can be achieved with the process.

idess model

The Widess �1973� model for thin-bed reflectivity teaches that the
undamental limit of seismic resolution is �/8, where � is the wave-
ength. Essentially, constructive wavelet interference and measured
mplitude in the time domain peak at �/4. The waveform shape and
eak frequency continue to change somewhat as amplitude decreas-
s to �/8, at which point the waveform approximates the derivative
f the seismic wavelet. As the layer thins below �/8, the waveform

ctober 2007; published online 27 February 2008.
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R38 Puryear and Castagna
oes not change significantly, but amplitude steadily decreases, as
emonstrated in Figure 1. In this figure, amplitudes are obtained
rom the convolution of a 30-Hz Ricker wavelet with a wedge
odel.
From this point of view, there are no means to differentiate be-

ween amplitude changes associated with reflection-coefficient
hanges and thickness changes below �/8, making this thickness a
ard resolution limit for broadband analysis in the time domain.
orse yet, in the presence of noise and wavelet broadening, the tran-

ition between �/4 and �/8 is obscured, sometimes making �/4 a
ractical limit of resolution. The key assumptions for the Widess
odel are that the half-spaces above and below the layer of interest

ave the same acoustic impedance and that the acoustic impedance
f the thin layer is constant.

eneralized reflectivity model

Although the theory of Widess �1973� is valid when the assump-
ions are satisfied, nature rarely accommodates such strict theoreti-
al provisions. The theory of spectral inversion is based on the real-
zation that the Widess model for thin-bed reflectivity presupposes a
eflectivity configuration that is actually a singularity in the continu-
m of possible reflection-coefficient ratios. Any reflection-coeffi-
ient pair can be decomposed into even and odd components, with
he even components having equal magnitude and sign and the odd
omponents having equal magnitude and opposite sign, as described
y Castagna �2004� and Chopra et al. �2006a, b�.

igure 1. Plot of amplitude versus thickness. Note the increase in
mplitude over background as the tuning thickness ��/4� is ap-
roached. Below tuning, the amplitude rolls off nearly linearly, and
he waveform approximates the derivative of the wavelet at �/8.

igure 2. Any arbitrary pair of reflection coefficients r1 and r2 can be
epresented as the sum of even and odd components. The even pair
as the same magnitude and sign, and the odd pair has the same mag-
itude and opposite sign.
Downloaded 02 Sep 2010 to 98.201.156.213. Redistribution subject to
The identity is illustrated in Figure 2. The Widess model assumes
hat reflection-coefficient pairs are perfectly odd, which can be a
ood approximation for certain target classes such as a sand layer en-
ased in a shale matrix. However, the assumption of an odd-reflec-
ivity pair implies the worst possible resolution for thin beds. Even a
mall even component in the reflection-coefficient pair can increase
he resolvability of a layer significantly. The improvement in resolu-
ion results from the fact that the even component constructively in-
erferes as thickness approaches zero. In contrast, the odd compo-
ent destructively interferes. Thus, the even component is more ro-
ust against noise as thickness approaches zero �see Tirado, 2004�.

We calculated peak frequency and peak amplitude from equations
iven by Chung and Lawton �1995�. Figure 3a shows the effect of
hinning on the peak frequency of a reflection-coefficient pair with
ven and odd components. For the model, the total peak frequency
ncreases with decreasing thickness and then returns to the peak fre-
uency of the wavelet rather than that of the derivative of the wavelet
s predicted by the Widess model. Interestingly, the total peak fre-
uency shows significant and continuous change down to zero thick-
ess. Likewise, the total peak amplitude �Figure 3b� does not ap-
roach zero with thickness as predicted by the Widess model.

The example indicates that the reflection-amplitude trend can
how significant variation from the Widess curve �Figure 1� as the
ayer thickness approaches zero when the even component is nonze-
o. Thus, significant information below the Widess resolution limit is
ot captured by traditional amplitude-mapping techniques, which
ssume equal and opposite reflection coefficients. Such examples of
nequal reflection coefficients at the top and base of a layer, which
re the rule rather than the exception for most real-world seismic re-
ections events, reinforce the need for a more generalized approach

o thin-bed amplitude analysis.
Based on the fact that spacing between spectral peaks and notches

s a deterministic function of layer thickness, our objective was to
evelop a new algorithm to invert reflectivity using the constant pe-
iodicity in the frequency domain. Our development started with the
xpression for an impulse pair in the time domain, from which we

a)

b)

igure 3. �a� Peak frequency and �b� peak amplitude as a function of
hickness for the even component, the odd component, and the total.
n �a�, there is peak-frequency information below the tuning thick-
ess. In �b�, total peak amplitude approaches the even-component
mplitude below tuning. Layer model parameters are r1 � �0.2, r2

0.1, and f � 30 Hz.
0
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Layer-thickness determination R39
ormulated a numerical algorithm using complex spectral analysis
nd then tested the algorithm on synthetic wedge models. We ex-
ended our development to multiple layers, and we tested our meth-
d on 3D seismic data from the Gulf of Mexico shelf, comparing
eismic data, spectrally inverted seismic data, and well-log data.

METHODS

pectral-inversion method

We applied windowed Fourier transforms to several reflectivity
odels to generate data for spectral inversion and used complex

pectral analysis to formulate the inversion algorithm. The algo-
ithm described herein defines the inversion for reflectivity using the
onstant periodicity of the amplitude spectrum for a layer of a given
hickness, taking advantage of the fact that spacing between spectral
eaks and notches is precisely the inverse of the layer thickness in
he time domain �Partyka et al., 1999; Marfurt and Kirlin, 2001�. Es-
entially, layer thickness can be determined robustly from a narrow
and of frequencies with a high signal-to-noise ratio �S/N�. To prove
his concept, note that the entire reflectivity spectrum for a single
ayer could be reconstructed from amplitudes at three frequencies in
he absence of noise.

Beginning with the expression for an impulse pair in the time do-
ain as expressed by Marfurt and Kirlin �2001� �Figure 4�,

g�t� � r1� �t � t1� � r2� �t � t1 � T� , �1�

here r1 is the top reflection coefficient, r2 is the base reflection coef-
cient, t is a time sample, t1 is a time sample at the top reflector, and T

s layer thickness. Locating the analysis point at the center of the lay-
r yields

g�t� � r1� �t �
T

2
� � r2� �t �

T

2
� . �2�

aking the Fourier transform of the shifted expression 2 gives

g�t, f� � r1 exp��i2� f�t �
T

2
��

� r2 exp��i2� f�t �
T

2
�� , �3�

here f is frequency and g�f� is the complex spectrum. Simplifying
y using trigonometric identities and taking the real part yields

Re�g�f�� � �2re�cos�� fT� , �4�

here re is the even component of the reflection-coefficient pair.
imilarly, the imaginary part of the complex spectrum is

Im�g�f�� � �2ro�sin�� fT� , �5�

here ro is the odd part of the reflection-coefficient pair.
Figure 5 shows plots for both the even and odd reflectivity spec-

ra corresponding to equations 4 and 5 for a layer with thickness
� 10 ms and reflection coefficients r1 � 0.2 and r2 � 0.1. Al-

hough both even and odd spectra show the same notch period, the
wo are shifted by half of the frequency spacing. For the individual
eal and imaginary components, the constant period in the spectrum
s related to the symmetrical location of the analysis point at the cen-
er of the layer. This placement effectively divides the reflection-co-
Downloaded 02 Sep 2010 to 98.201.156.213. Redistribution subject to
fficient pair into perfectly odd and even components, thereby elimi-
ating the phase variation for each. The effect of violating this condi-
ion is discussed inAppendix A.

To maintain constant periodicity in the spectrum while shifting
he analysis point away from the layer center, we compute the modu-
us of the real and imaginary components of the spectrum, which is
nsensitive to phase. Beginning with general expressions for the real
nd imaginary time-shifted spectra,

Im�e2i� f�tg�f�� � 2ro sin�� fT�cos�2� f�t�

� 2re cos�� fT�sin�2� f�t� �6�

nd

Re�e2i� f�tg�f�� � 2re cos�� fT�cos�2� f�t�

� 2ro sin�� fT�sin�2� f�t� , �7�

t can be shown �Appendix B� that

O�t,k� � G�f�
dG�f�

df
� 2�Tk sin�2� fT� , �8�

here G�f� is amplitude magnitude as a function of frequency, k
re

2 � ro
2, and O�t,k� is the cost function at each frequency. The so-

xm (km)

t(s)

t2

t1

T

Reflectivity = r1

Reflectivity = r2

igure 4. Two-layer reflectivity model �from Marfurt and Kirlin,
001�.

igure 5. Amplitude versus frequency plots for �a� even and �b� odd
omponents of the reflection-coefficient pair r1 � 0.2 and r2 � 0.1.
n this example, the even component is dominant.
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R40 Puryear and Castagna
ution to equation 8 occurs when the sum of cost functions O�t,k�,
valuated at each frequency, is minimized over the range of frequen-
ies within the analysis band. One data term exists at every sample
requency, so the performance of the method is determined by the
/N over a given analysis band �i.e., more frequencies with a high
/N yield a more stable and accurate inversion�.
We found the global minimum of equation 8 for a given analysis

and by searching physically reasonable model parameters k and T
n two-parameter model space and minimizing the objective func-
ion �Figure 6�. Although it is costly and impractical for more com-
licated cases, the global search method guarantees the avoidance of
ocal minima for the single-layer case. The remaining model param-
ters then are determined by

ro �	G�f�2

4
� k cos2�� fT� , �9�

re � 	k � ro
2, �10�

igure 6. The difference or error function between the data and a
ange of model parameter pairs is calculated. The blue bull’s-eye is
he correct model solution �T � 10 ms, k � 0.02�. The black arrow
hows a local minimum.

)

)

igure 7. �a� Forward-model and �b� inverse-model schemes used
or the synthetic. The plots show magnitude of amplitude versus fre-
uency. In �a�, multiplication of the wavelet with the reflectivity
pectrum and addition of noise in the frequency domain yields the
eismic signal. In �b�, division of the seismic signal by the wavelet in
he frequency domain yields the noisy reflectivity band. A smooth-
ng filter produces the inversion band for input to the model.
Downloaded 02 Sep 2010 to 98.201.156.213. Redistribution subject to
nd

t1 �
1

2i� f
ln� g�f�

r1 � r2e2i� fT� , �11�

here t1 is the time sample at the top reflector r1 and g�f� is the com-
lex spectrum for the reflection-coefficient pair. Equation 11 can be
erived by taking the Fourier transform of equation 1 and solving for

1. The reflection coefficients r1 and r2 can be recovered by recom-
osing the odd and even components of the pair calculated using
quations 9 and 10, the reverse of the operation illustrated in Figure
. Thus, it is straightforward to compute the remaining components
f the layer-reflectivity model from the initial parameters k and T.
ote that although the derivation �Appendix B� of the algorithm as-

umes that the even reflectivity component is greater than the odd re-
ectivity component, the solution is the same for the antithetical as-
umption.

odeling results

We test the method by convolving a 30-Hz Ricker wavelet with
eflection-coefficient pairs that have various ratios. We produce
edge models with 4-ms sampling for a predominantly odd reflec-

ion-coefficient pair, r1 � �0.2 and r2 � 0.1, and a predominantly
ven reflection-coefficient pair, r1 � 0.2 and r2 � 0.1. The tuning
hickness of a thin-bed model with a Ricker wavelet is given by
hung and Lawton �1995�:

tR �
	6

2� f0
, �12�

here f0 is the dominant wavelet frequency. For a 30-Hz Ricker
avelet, tR � 13 ms. The convolution of the wavelet with the reflec-

ion-coefficient pair in the time domain is equivalent to multiplica-
ion with the reflectivity spectrum in the frequency domain. The in-
ersion performs perfectly in the absence of noise for layers of any
hickness.

To achieve a more realistic model, we added noise in the time do-
ain, and we measured and controlled the noise level by computing

he ratio of the area under the spectrum of the signal to that of the
oise in the frequency domain. We tested the model with 1% and 5%
oise levels. The forward-modeling procedure is illustrated in Fig-
re 7a.

The addition of noise causes instability in the inversion for very
hin layers, partly because the reflectivity spectrum approaches a flat
pectrum as T approaches zero. We mitigated this problem by apply-
ng the arbitrary constraint �0.03�k�0.03 to ensure that the re-
ection-coefficient strength could not exceed what typically is ob-
erved in seismograms.After Fourier-transforming the time-domain
ignal, we removed the wavelet overprint by dividing the magnitude
f the amplitude of the seismic signal by that of the wavelet at each
nalysis frequency.

We tested the inversion at different noise levels while varying the
nalysis band and smoothing filter. These experiments showed that
he optimal analysis band and the optimal smoothing filter are deter-

ined by the noise level. We achieved optimal results for the 1%
oise case using a 25-Hz bandwidth sampled at 2-Hz frequency in-
rements and centered on the peak signal frequency. A signal is cor-
upted by noise, so it was necessary to narrow the bandwidth. For the
% noise case, we achieved optimal results with a 20-Hz bandwidth.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Layer-thickness determination R41
More smoothing is required to stabilize the derivative operator as
oise is added. The process resulting in the smoothed inversion band
s illustrated in Figure 7b. We took derivatives of the magnitude of
he amplitude with respect to frequency at each observation frequen-
y sample using a first-order central difference approximation. Fi-
ally, we multiplied the magnitude of the amplitude at each observa-
ion frequency by the derivative of the magnitude of the amplitude at
hat frequency and minimized the error between the model defined
y equation 8 and the data for the range of frequencies within the
nalysis band �Figure 6�.

We applied the inversion defined by equation 8 using a 256-ms-
indow fast Fourier transform �FFT� for spectral decomposition to
edge models that have predominantly odd and even reflection-co-

fficient pairs �Figure 8�. Figure 9a and b shows the result of the in-
ersion �black� compared with the true reflectivity model �green and
ed� for 1% and 5% levels of noise, respectively, for the predomi-
antly odd reflection-coefficient pair; Figure 9c and d shows these
esults for the predominantly even pair. The tuning thickness is rep-
esented by the vertical black line.

We compared the 5% noise results with the corresponding ampli-
ude-mapping results �brown� using tuning analysis �Widess, 1973;
allweit and Wood, 1982�. The algorithm performed nearly perfect-

y for both configurations at 1% noise levels as expected, illustrating
he principle that noiseless data could yield extremely high resolu-
ion.

Although the noise level is unrealistically low for most seismic
ata, the results highlight the importance of meticulous noise sup-
ression during acquisition and processing. For thin layers, the re-
ults are useful far below tuning. For the 5% noise cases, the absolute
rror does not increase significantly for very thin layers because of
he reflectivity constraint, although the percent error increases as
ayer thickness decreases. Reflection-coefficient estimates were
omparably accurate.As expected, accuracy deteriorates as noise in-
reases beyond 5%. Thus, for a given wavelet peak frequency and
nalysis band, noise level rather than tuning thickness determines
he limit of resolution.

The tuning-analysis predictions are shifted toward thicker
ayers for the even and odd components because of the assumption
f equal-magnitude reflection coefficients at the top and base. The
ssumption in the relationship between amplitude and thickness de-
ends on the particular mapping scheme. We plotted the results of
he amplitude-mapping techniques that generated the least error in
hickness prediction. For the predominantly odd pair, the optimal
mplitude-mapping method was a simple linear regression from
eak tuning to zero thickness. However, this technique generated
arge errors and negative thickness predictions for the predominant-
y even pair. So for the predominantly even pair, we assumed both of
he reflection coefficients were equal to the peak background ampli-
ude for the thick layer and mapped thickness from the tuning ampli-
ude to zero thickness.

We tested the inversion on a reflector model that violates the basic
ssumptions of the method. The model includes two layers defined
y three reflectors, all with reflection coefficients equal to 0.1. The
op layer has twice the thickness of the lower layer. We decomposed
he spectrum using an 80-ms DFT with a Gaussian taper centered on
he thicker layer.

Figure 10 shows the model �green and red� and the resulting inver-
ion �black�. The predicted layer thickness is measured from the top
eflector to the black line, yielding a thickness value greater than that
f the thicker layer but less than that of the two layers combined. The
Downloaded 02 Sep 2010 to 98.201.156.213. Redistribution subject to
bserved predicted thickness results from the interference of the two
ayers in the frequency domain, creating a period corresponding to a
ingle layer that is slightly thicker than the thickest layer. The reflec-
ion-coefficient predictions for the lower reflector are closer to the
um of the two base reflection coefficients r2 � r3 � 0.2 for thin
ayers and to the single base reflection-coefficient value r2 � r3

0.1 for thicker layers. In practice, additional spikes widely spaced
rom the reflectors of the layer should be considered noise for the
ingle-layer model.

Although we value the single-layer model for its ease of invert-
bility, it is necessary to extend the inversion scheme so that it simul-
aneously can invert seismograms containing multiple interfering
ayers for most real cases.

xtension of the method to multiple layers

Recognizing that a seismogram can be represented as a superposi-
ion of impulse pairs, the inversion for the properties of a single layer
s extended easily to encompass a general reflectivity-series inver-
ion by considering the spectrum versus time acquired using a mov-
ng window as a superposition of interference patterns originating at
ifferent times. The inversion process for reflection coefficients and
ayer thickness is performed simultaneously for all impulse pairs af-
ecting the local seismic response.

)

)

igure 8. Original reflectivity wedge models for �a� a predominantly
dd reflection-coefficient pair and �b� a predominantly even reflec-
ion-coefficient pair. The vertical black line defines the tuning thick-
ess for the 30-Hz Ricker wavelet convolved with the reflection-co-
fficient pair �blue�.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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R42 Puryear and Castagna
Let us represent the reflectivity series r�t� as a summation of even
nd odd impulse pairs:

r�t� � 

��

�

�re�t�II� t � �

T�t� ��dt � 

��

�

�ro�t�II� t � �

T�t� ��dt ,

�13�

here re�t� and ro�t� are the magnitudes of the impulse pairs as a
unction of time, T�t� is the time series of layer time thicknesses, II is
n odd impulse pair, and II is an even impulse pair. Assuming a con-
olutional seismogram and known wavelet w�t, f�, a spectral decom-
osition of a seismic trace s�t, f� is then

s�t, f� � w�t, f� 

�tw

tw

�re�t�cos�� fT�t��

� iro�t�sin�� fT�t���dt , �14�

here tw is window half-length. The multilayer case involves more
han two reflectors, so it is necessary to use an objective function for
nversion that properly accounts for interference between multiple
ayers.

) b)

) d)

igure 9. Result of the thickness inversion of a predominantly odd r
air with �a� 1% noise and �b� 5% noise and a predominantly even r
air, also with �c� 1% noise and �d� 5% noise. The plot shows the or
nd red� along with the inversion �black� and the amplitude-mapping
hich uses the incorrect assumption of equal reflectivity. The vertic

he tuning thickness for the 30-Hz Ricker wavelet convolved with t
ient pair �blue�.
Downloaded 02 Sep 2010 to 98.201.156.213. Redistribution subject to
If the wavelet spectrum is known, we can solve for r�t� and T�t� by
ptimizing the objective function O�t,re,ro,T� by

O�t,re,ro,T� � 

fL

fH


�e�Re�s�t, f�/w�t, f��

� 

�tw

tw

re�t�cos�� fT�t��dt�
� �o�Im�s�t, f�/w�t, f��

� 

�tw

tw

ro�t�sin�� fT�t��dt��df , �15�

here f l is low-frequency cutoff, fh is high-frequency cutoff, and �e

nd �o are weighting functions, the ratio of which can be adjusted to
nd an acceptable trade-off between noise and resolution. For high
o/�e, the reflectivity approaches the Widess model, and the resolu-

tion limit becomes �/8. We summarize the multi-
layer inversion process in Figure 11.

Multilayer synthetic example

To validate the multilayer inversion technique
in a controlled situation, we generated a model
containing several arbitrary layers �Figure 12a�,
from which we generated a synthetic trace �Fig-
ure 12b�. The reflectivity spikes were convolved
with a 30-Hz Ricker wavelet. The identical trace
with variable random noise is repeated in Figure
12 for clarity. We tested the inversion using win-
dows of different lengths and centered at different
locations along the synthetic trace. Assuming no
a priori insight, we set the weighting function re-
lationship �o � �e and minimized the objective
function given by equation 15 using a standard
least-squares conjugate-gradient inversion.

We inverted the data from a 200-ms Gaussian-
tapered Fourier transform, thereby recovering the
original model �Figure 12c�. Shortening the total
window length to 100 ms and maintaining the
Gaussian taper, we computed the Fourier trans-
form for time samples between 50 and 150 ms,
respectively. The window was shifted one time
sample at a time, with the results of each previous
window acting as a constraint for the next inver-
sion. If no new reflectors appeared in the window
or exited the window as it shifted downward, the
result was the same as in the previous window. If
there were no reflectors in the window, the algo-
rithm inverted the noise, a result that was not par-
ticularly problematic because the noise was not
amplified.

n-coefficient
n-coefficient
model �green
que �brown�,
k line defines
ction-coeffi-
eflectio
eflectio
iginal
techni

al blac
he refle
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Layer-thickness determination R43
The results for the windows centered at 50 and 150 ms are shown
n Figure 12d and e. As expected, the shorter windows divide the
verall longer series of reflectors into two isolated sets. By superpo-
ition, we can sum the two sets of reflectors to obtain the longer se-
ies. Although the window length can be varied according to the de-
ired result, there are practical limits to the length of an optimal in-
ersion window, which often are defined by trial and error. If the
indow is too short, frequency resolution suffers; if the window is

oo long, time resolution is lost �see Castagna et al., 2003�.

REAL DATA RESULTS

omparison to well-log data

We studied the results of the application of the multilayer spectral-
nversion process �Figure 11� to two seismic data sets from the Gulf
f Mexico shelf. Well information for lithologic interpretation, in-
luding P-wave, resistivity, and deep induction, was available �Fig-
re 13�. We created a synthetic tie between the input seismic data and
he well-log data, stretching the well-log data to time without refer-
nce to the inverted data for an unbiased, quantitative layer-thick-
ess comparison between the well-log data and the inverted data.
he wavelet extracted from the well for the synthetic is shown in
igure 14. We also visually compared the well-log data, the inverted
ata, and the original data to assess the difference in vertical resolu-
ion between the inverted data and the original data �Figures 15 and
6�.

In the original seismic tie to the well �Figure 13�, we achieved a
elatively good fit �r � 0.64� between the reflectivity convolved
ith the extracted wavelet and the seismic trace. However, because

he seismic data are much lower in frequency than the log data, the fit
s useful only as an approximation for aligning gross lithologic pack-
ges.Agreat deal of useful information is lost to the seismic wavelet.

The thickness inversion provides a significantly better representa-
ion of the layering observed in the log data than the original seismic
ata does. Figure 15 shows the spectral inversion for reflectivity, dis-
layed with a �90° phase shift to emphasize relative impedance
hanges and a slight time shift from the original synthetic to provide
tie to the well with higher fidelity. The need for this time shift be-

igure 10. Result of the inversion for a two-layer model �red�, violat-
ng the assumptions of the method. For thicker layers, the predicted
ayer thickness from the inversion �black�, measured from the top re-
ector, falls between the thickness of the thicker layer and that of the

otal package. As the reflectors converge, the inversion becomes un-
table.
Downloaded 02 Sep 2010 to 98.201.156.213. Redistribution subject to
igure 11. Flowchart for the method of the inversion, where dout is
he output trace, tc is the time sample at the center of the window, and
t is the sampling interval.
) b)

)

e)

d)

igure 12. �a� The original model is convolved with a 30-Hz Ricker
avelet to create �b� a synthetic seismogram. �c� The spectral-inver-

ion result using a 200-ms window centered at 100 ms recovers the
riginal reflectivity series. �d� The spectral-inversion result using a
00-ms window centered at 50 ms and �e� the spectral-inversion re-
ult using a 100-ms window centered at 150 ms recover the portions
f the reflectivity series contained within the window. By superposi-
ion, c � d � e.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Downloaded 02 Sep 2010 to 98.201.156.213. Redistribution subject to
omes apparent only after reflectivity inversion. The lithologic col-
mn shows sand and shale packages interpreted primarily from the
hree logs �see Figure 13�. We initially distinguished sands and
hales using a gamma-ray log, but we used resistivity, deep induc-
ion, and impedance for the bulk of the interpretation because
amma-ray data were absent in the well with an available P-wave
elocity log.

Generally, sands correspond to higher resistivity and separation of
eep induction and shallow-resistivity curves as a result of mud-fil-
rate invasion. In the interval shown in Figure 15, the sands have
igher impedance than the shales. Comparing the lithologic column
o the inverted data, the thickness inversion clearly shows layering
elow the tuning thickness �the peak frequency of the data is 16 Hz,
ielding a one-quarter-wavelength resolution of about 31 ms�. A
ell-resolved sand-shale sequence that has a total thickness very

lose to the tuning thickness is indicated also in Figure 15. Although
he thickness inversion effectively delineates the layering sequence
elow tuning, it fails to capture gradational impedance changes
ithin thin layers, as in the case of shale grading to sand, shown in

he lithologic column.
The following example demonstrates the vast improvement in

ertical resolution for discrete layers that is achieved by using thick-
ess inversion rather than the original data.

omparison to conventional seismic data

Viewing the comparison of the thickness inversion to the original
eismic data in Figure 16, both with a �90° phase rotation, it is clear
hat boundaries between layers are indistinct on the original seismic
ection. Layers below the 31-ms tuning thickness are not resolved in
he original seismic data. Geologic detail is obscured by the wavelet-
nterference patterns, which become more apparent when compared
ith the inversion. A skilled interpreter can decipher meaningful in-

ormation embedded in the wavelet-interference patterns, but it is
esirable to remove these artifacts altogether to allow direct access
o the underlying geology.

igure 16. Original seismic data �left� compared with the lithologic
olumn �center� and the thickness inverted data �right�. Both images
re phase-rotated by �90°. Note the failure of the original seismic
ata to delineate thin layering as compared with the inverted data.
lso note that the inverted data do not resolve gradational changes
ithin an individual layer.
igure 13. Well-log data, including deep induction, resistivity, and
omputed impedance, long with the synthetic tie �blue�, the trace at
he well �red�, and the seismic traces surrounding the well �black�.
igure 14. The phase and amplitude spectra of the wavelet extracted
rom the well. The peak frequency is 16 Hz.
igure 15. Impedance log �left� compared with spectrally inverted
ata �right�. Sands are of higher impedance in this interval. The
ithologic section interpreted from the impedance log shows a close
orrespondence to the inverted data. Note the two-layer sequence re-
olved at the tuning thickness.
 SEG license or copyright; see Terms of Use at http://segdl.org/



T

t
i
o
t
s

c
t
b
�

u
a
t

S

o
p

l
s
�
f
i
v
i
t
a
a

l
T
r
g
e
g

b
w
t
a
�

F
s
a
n
t
l

a

b

F
�
a
w
b

F
d
n
v
l
a
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hickness comparison

We quantitatively compared thicknesses from the well-log data to
hose from the spectral reflectivity inversion, interpreting the layer-
ng from the well-log data, which were stretched from depth to time
n the original synthetic, and comparing the results to the inverted
hicknesses as defined by zero crossings on the �90° phase-rotated
pectral reflectivity inversion.

We performed the interpretation between 1700 and 2900 ms. The
omparison is plotted in Figure 17, with excellent correlation be-
ween well-log data thicknesses and the predicted thicknesses �pink�
elow the tuning line �red�. The mean error for the two data sets is 	

�0.5 ms, indicating that the method is generally accurate and
nbiased. The square of the correlation coefficient is R2 � 0.94 with
standard deviation of 
 � 3.10 ms, corresponding to precision in

hickness estimation on the order of 15 ft �4.5 m� for this example.

tratigraphic interpretation

Figures 18–20 show stratigraphic examples in which both the
riginal seismic data and the spectrally inverted data have a �90°
hase to highlight layer boundaries.

An example of the wavelet overprint effect is observed on the
arge-scale seismic line comparison of Figure 18. On the original
eismic line, an apparent discontinuity is inferred at about 1315 ms
Figure 18a�. The discontinuity might be interpreted as a localized
ault with minimal offset or as a stratigraphic discontinuity in layer-
ng. However, comparison with the inverted data �Figure 18b� re-
eals another picture. Although the inverted data show more detail
n general, the apparent discontinuity in layering does not exist on
he inverted section despite the fact that the inverted data are gener-
ted using a trace-by-trace operation that makes no assumption
bout lateral continuity.

On the inverted section, the apparent disruption in layering actual-
y represents a lateral change of rock properties within a given layer.
he discrepancy points to the apparent discontinuity in reflection ar-

ival times seen on the original data; it is not a geologic feature but a
eophysical effect. Specifically, it is a shift in the wavelet-interfer-
nce pattern caused by an impedance change that resembles a small
eologic layering discontinuity in the seismic image.

igure 17. Plot of predicted thicknesses from the inversion �pink
quares� versus well-log interpreted thickness �blue line is a 1:1 di-
gonal�, showing a strong correlation between the two. The thick-
esses were interpreted between 1700 and 2900 ms. The tuning
hickness is marked by the red line, and accuracy is maintained be-
ow one-eighth of a wavelength.
Downloaded 02 Sep 2010 to 98.201.156.213. Redistribution subject to
The smaller-scale image in Figure 19 shows significant lateral
reaks in layering that might be interpreted as discrete sand bodies
ith possible erosion of previously continuous layers. These fea-

ures can be caused by different types of downslope transport mech-
nisms such as channel incision. The horizons on the original data
Figure 19a� are difficult to continue in places �black arrows�. How-

)

)

igure 18. �a� The original seismic data show a small discontinuity.
b� The thickness-inverted data reveal a strikingly continuous layer,
strong indication that the geologic discontinuity seen in �a� is a
avelet effect rather than a real subsurface feature. The phase for
oth images in �90°, and red indicates higher impedance.

a)

b)

igure 19. �a� The original seismic line has significant stratigraphic
iscontinuities �black arrows� that might be interpreted as the termi-
i of discrete depositional lobes. �b� The spectrally inverted data re-
eal a laterally continuous layering characteristic of undisturbed
ayer-cake geology. The phase on both images is �90°. Timing lines
re 20 ms, and red indicates higher impedance.
 SEG license or copyright; see Terms of Use at http://segdl.org/



e
l
a
e
l

g
i
t
t

�
s
g
c
b
c
v
i

M
m
p
v
c
c

s
p
s
s
t
r
W
t

sF
r
i
t
a
p

a

b

F
w
f
m
l

a

b

F
c
t
T
n
l

R46 Puryear and Castagna
ver, the spectrally inverted data �Figure 19b�, which assume no re-
ationship between neighboring traces, show striking continuity
long the same horizons. Once again, the complex wavelet-interfer-
nce pattern creates an illusory geologic scenario that accompanies
imited resolution.

The previous examples demonstrate artifacts that resemble geolo-
y, and Figure 20 shows an example of the same wavelet effect eras-
ng geologic information. In the original seismic data �Figure 20a�,
he apparent pinch-out of a low-impedance layer is observed, with
he upper and lower events merging below the resolution of the layer

a)

b)

igure 20. �a� The original seismic data shows a pinch-out �white ar-
ow� where the thin layer becomes unresolved. �b� The inverted data
mages the pinch-out much farther updip.An apparent erosional fea-
ure �black circle� is resolved on the inversion. The phase on both im-
ges is �90°. Timing lines are 20 ms, and red indicates higher im-
edance.

)

)

igure 21. Comparison of �a� the original zero-phase seismic data
ith �b� the spectrally inverted data, which are phase-rotated �90°

rom �a�. Channels �white arrows show the base of channels� have
ore relief and more curvature on the original seismic data. Timing

ines are 10 ms, and red indicates higher impedance.
Downloaded 02 Sep 2010 to 98.201.156.213. Redistribution subject to
white arrow�. However, the spectrally inverted data �Figure 20b�
how the same low-impedance layer imaged much farther updip, to-
ether with the resolved bounding layers. In addition, an apparent lo-
alized broadening or bulge in the wavelet in the original data just
elow the first two timing lines is resolved as a possible erosional in-
ision on the inverted data. Such improved detection of stratigraphic
ariation has significant implications for better reservoir character-
zation and delineation.

We tested the method on a line of data from a shallow Gulf of
exico data set with known large incision features, previously
apped using the coherence attribute. Figures 21 and 22 show zero-

hase original seismic images and �90° phase-rotated spectral-in-
ersion images. Typically, seismic images of channels show signifi-
ant relief from the levy to the thalweg, which appeals to the intuitive
oncept of a curved-channel geometry.

Figure 21a is an example of a pair of adjacent channels, showing a
trongly curved geometry on the original seismic data. The �90°
hase-rotated spectrally inverted section of the data �Figure 21b�
hows an alternative image of the channels in which the curvature
een in the channel profile is less prominent, hinting at the possibility
hat some component of the curvature can be attributed to the rapid
ock-property changes known to occur across the strike of a channel.

e believe further investigation of this phenomenon using well con-
rol is warranted.

Figure 22 shows another large channel imaged on the original
eismic data and on the �90° phase-rotated spectral inversion, re-

)

)

igure 22. A large channel �white arrows show the edges of the
hannel� imaged on �a� the original zero-phase seismic data and �b�
he spectrally inverted data, which are phase-rotated �90° from �a�.
he thin-bed layering of the channel edges and overall vertical chan-
el extent are imaged more precisely on the inverted data. Timing
ines are 10 ms, and red indicates higher impedance.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Layer-thickness determination R47
pectively. The tuning effect in the original data confounds channel-
hickness interpretation as the channel thins toward the levies. There
s also an ambiguity in the placement of the top and base bounding
urfaces of the channel related to the wavelet phase. The inverted
ata show a clearer picture of the channel geometry, with constant
hinning of the channel-fill wedges toward the edges of the channel.
n addition, the top and base bounding surfaces of the channel can be
icked more precisely on the inverted data at the sharply defined
ero crossings with less guesswork in the placement of horizons.

Thus, in the workflow of seismic interpretation, spectral inversion
dds visual information that can contribute to delineating geologic
eatures of interest such as channels.

CONCLUSIONS

Beginning with a generalized theory of reflectivity, spectral de-
omposition is used as a tool to unravel the complex interference
atterns created by thin-bed reflectivity. These patterns can be in-
erted to obtain the original reflectivity. We developed and studied
ew analytical methods for spectral inversion based on complex
pectral analysis. Spectral inversion yields accurate thickness deter-
inations below tuning, using the inverse relationship between

hickness and the constant periodicity of spectral interference pat-
erns.

Representing the seismogram as a superposition of simple layer
esponses constitutes a means of imposing on the inversion the a pri-
ri assumption that sedimentary rocks occur as layers with discrete
nterfaces at the top and base and can be represented as such in a re-
ectivity series. When this assumption is valid, the consequence is

hat on the inverted reflectivity trace, there is geologically meaning-
ul information at frequencies outside the band of the original seis-
ic data. When this assumption is false, the recovered frequency in-

ormation outside the band of the original seismic data will also be
alse. For example, smooth impedance transitions will be inverted as
locky steps in impedance.

Spectral shape information obtained from spectral decomposition
an be used to drive an inversion with significantly greater vertical
esolution than that of the original seismic data, thereby improving
hickness estimation, correlation to well logs, and stratigraphic inter-
retation. These results are achieved without using well-log infor-
ation in the inversion as a starting model or as a constraint. The re-

ulting inversion therefore is unbiased by preconceived ideas.As ev-
denced by the results of applying the method to real data, spectral
nversion has great potential as a practical tool for seismic explora-
ion.

The spectral-inversion methods described in this work demon-
trate improvement in vertical resolution; however, we did not use
ell-log information after the wavelet-removal step. It is desirable

o investigate the effectiveness of using well-log data to further im-
rove vertical resolution of interbedded layers or gradational chang-
s within layers that are not revealed by seismic spectral inversion
lone. In addition, thickness constraints from spectral inversion
ould be used as input for more accurate model-based impedance in-
ersion.
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APPENDIX A

THE SHIFT EFFECT

When examining the real and imaginary components separately,
phase shift occurs if the analysis window is not centered on the lay-
r. To study this effect in more detail, we revisited the original equa-
ions. The shift theorem says that a time sample shift �t away from
he layer center tc in the time domain is equivalent to a phase ramp in
he frequency domain:

g�tc � �t� ↔ e2i� f�tg�f� . �A-1�

pplying this equivalency,

e2i� f�tg�f� � �cos�2� f�t� � i sin�2� f�t���2re cos�� fT�

� i2ro sin�� fT�� . �A-2�

aking the real component of equation A-2,

Re�e2i� f�tg�f�� � 2re cos�� fT�cos�2� f�t�

� 2ro sin�� fT�sin�2� f�t� .

�A-3�

earranging yields

Re�e2i� f�tg�f�� � 2ro�cos�� fT�cos�2� f�t�

� sin�� fT�sin�2� f�t��

� 2�re � ro�cos�2� f�t�cos�� fT�,

� 2ro cos�2� f��t � T/2�� � 2�re

� ro�cos�2� f�t�cos�� fT� , �A-4�

hich has the form of a modulation and represents the spectral plots
f time-shifted models. A similar expression can be derived for the
dd component. The phase shift corresponds to a sinusoidal modula-
ion of the signal, which can be viewed as an interference pattern su-
erimposed on another interference pattern. Furthermore, the period
f the interference pattern is determined by the magnitude of the
hift.

APPENDIX B

INVERSION-MODEL DERIVATION

Applying the shift theorem �equation A-1� and taking general ex-
ressions for the real and imaginary spectra,

Im�e2i� f�tg�f�� � 2ro sin�� fT�cos�2� f�t�

� 2re cos�� fT�sin�2� f�t�

�B-1�

nd
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R48 Puryear and Castagna
Re�e2i� f�tg�f�� � 2re cos�� fT�cos�2� f�t�

� 2ro sin�� fT�sin�2� f�t� .

�B-2�

xpressing the amplitude spectrum and setting �t � 0 as a constant
eference,

G�f� � 	�Re�e2i� f�tg�f���2 � �Im�e2i� f�tg�f���2

� 	4re
2 cos2�� fT� � 4r0

2 sin2�� fT� . �B-3�

earranging terms,

�f�

� 2	�re
2 � r0

2�cos2�� fT� � r0
2 cos2�� fT� � r0

2 sin2�� fT� .

�B-4�
aking the derivative,

dG�f�
df

� �
2�T�re

2 � ro
2�cos�� fT�sin�� fT�

	�re
2 � ro

2�cos2�� fT� � r0
2

. �B-5�

ultiplying and simplifying using trigonometric identities yields

G�f�
dG�f�

df
� �4�T�re

2 � r0
2�cos�� fT�sin�� fT�

� �2�Tk sin�2� fT� , �B-6�

here k � re
2 � ro

2.

NOMENCLATURE

ariable Definition

Seismic record time

�t� Time-domain impulse pair

1 Top reflector in a two-reflector model

2 Base reflector in a two-reflector model

1 Time at top reflector in a two-reflector model

2 Time at base reflector in a two-reflector model

Layer two-way traveltime thickness

c Time at layer center in a two-reflector model

t Time shift

f Frequency

�f� Frequency-domain impulse response

e Real component of a function

m Imaginary component of a function

e Even component of the reflection coefficient

o Odd component of the reflection coefficient

�f� Magnitude of amplitude as a function of frequency
Downloaded 02 Sep 2010 to 98.201.156.213. Redistribution subject to
ariable Definition

dG�f� / df Derivative of magnitude of amplitude with respect
to frequency

Even component of reflectivity squared minus odd
component squared

R Tuning thickness

fo Wavelet peak frequency

�t� Reflection-coefficient series as a function of time

Convolutional placeholder

I Even impulse pair

I Odd impulse pair

�t, f� Time- and frequency-varying seismic trace

�t, f� Time- and frequency-varying seismic wavelet

w Window half-length

�k,T� Frequency-varying objective function

�t,re,ro,T� Time- and frequency-varying objective function

e Even-component weighting function

o Odd-component weighting function

fL Low-frequency cutoff

fH High-frequency cutoff
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